Retrospective correction for induced magnetic field inhomogeneity in measurements of large-vessel hemoglobin oxygen saturation by MR susceptometry.

نویسندگان

  • Michael C Langham
  • Jeremy F Magland
  • Tom F Floyd
  • Felix W Wehrli
چکیده

MR susceptometry-based blood oximetry relies on phase mapping to measure the difference in magnetic susceptibility between intravascular blood and surrounding tissue. The main source of error in MR susceptometry is the static field inhomogeneity caused by an interface between air and tissue or between adjacent tissue types. High-pass filtering has previously been used in conjunction with shimming to reduce the effect of low spatial-frequency modulations of the phase caused by large-scale induced magnetic fields. We demonstrate that high-pass filtering is not optimum for MR susceptometry because the results are sensitive to filter size. We propose an alternative method that acquires data without scanner-implemented default shimming, and fits, after appropriate weighting and masking, the static field inhomogeneity to a second-order polynomial. Compared to shimming the retrospective correction technique improved agreement between hemoglobin saturations measured in different segments of a vessel (femoral versus popliteal artery and vein) from three standard errors to less than one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy and precision of MR blood oximetry based on the long paramagnetic cylinder approximation of large vessels.

An accurate noninvasive method to measure the hemoglobin oxygen saturation (%HbO(2)) of deep-lying vessels without catheterization would have many clinical applications. Quantitative MRI may be the only imaging modality that can address this difficult and important problem. MR susceptometry-based oximetry for measuring blood oxygen saturation in large vessels models the vessel as a long paramag...

متن کامل

Accuracy of the cylinder approximation for susceptometric measurement of intravascular oxygen saturation.

Susceptometry-based MR oximetry has previously been shown suitable for quantifying hemoglobin oxygen saturation in large vessels for studying vascular reactivity and quantification of global cerebral metabolic rate of oxygen utilization. A key assumption underlying this method is that large vessels can be modeled as long paramagnetic cylinders. However, bifurcations, tapering, noncircular cross...

متن کامل

Phase-based regional oxygen metabolism (PROM) using MRI.

Venous oxygen saturation (Y(v) ) in cerebral veins and the cerebral metabolic rate of oxygen (CMRO(2)) are important indicators for brain function and disease. Although MRI has been used for global measurements of these parameters, currently there is no recognized technique to quantify regional Y(v) and CMRO(2) using noninvasive imaging. This article proposes a technique to quantify CMRO(2) fro...

متن کامل

Structural, magnetic and dielectric properties of pure and Dy-doped Co3O4 nanostructures for the electrochemical evolution of oxygen in alkaline media

In this study, spinel-type cobalt oxide (Co3O4) and Co3-xDyxO4 (x = 0.04 and 0.05 molar ratio) nanoparticles were synthesized via combustion method at 700 °C. Crystallite nature, phase purity and thermal analysis of the prepared compounds were investigated by PXRD, FT-IR and TGA techniques. Structural analyses were performed by the FullProf program employing profile matching with constant scale...

متن کامل

A Fast and Robust Method for Quantifying Magnetic Susceptibility of Arbitrarily Shaped Objects Using MR

Introduction: Quantifying magnetic susceptibility of biological tissue using MRI has important clinical implications such as for differentiating a hemorrhagic lesion as acute or chronic, in determining its size, identifying calcifications, quantifying iron deposition in sub-cortical structures and measuring oxygen saturation in blood. MR susceptometry of substances in standard geometries (spher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 61 3  شماره 

صفحات  -

تاریخ انتشار 2009